EKsumic's Blog

let today = new Beginning();

Click the left button to use the catalog.

OR

关于PCRArenaRecorder&Analyzer的概率分析相关逻辑代码

关于PCRArenaCardRecorder&Analyzer的概率分析相关逻辑代码

嘛,这次为了把分析器写好写对,真的是吃了不少苦头,都怪我一开始数据库设计弱耦合(×)无关联(√)角色与图片的关系,现在好了,数据库设计简单了,代码就复杂了……

以下是frmAnalyzer的部分逻辑代码:

public void GetTheTopTeam()
{
    using (var playerData = new PlayerDbContext())
    {
        var GenreId = playerData.Genres.SingleOrDefault(x => x.Name == GenreN);
        var Player = playerData.PlayerDatas.SingleOrDefault(x => x.PId == Pid);
        var line = playerData.Lineups;
        //筛选出该玩家的所有记录
        var singlePlayer = line.Where(x => x.PlayerId == Player.Id);
        //筛选出进攻还是防守
        int RecordCount = singlePlayer.Count(x => x.GenreId == GenreId.Id);
        if (RecordCount > 0)
        {
            //获得要查询的队伍集合
            var Teams = singlePlayer.Where(x => x.GenreId == GenreId.Id);
            //获得用户特定位置的集合
            var Team1 = Teams.Where(x => x.PositionId == 1);
            var Team2 = Teams.Where(x => x.PositionId == 2);
            var Team3 = Teams.Where(x => x.PositionId == 3);
            //group根据T1~T5分组,查出来的值还是T1~T5,并且还是按照数量进行倒序排名的
            var q1 = Team1.ToList().GroupBy(x => x.T1 + x.T2 + x.T3 + x.T4 + x.T5, x => x.T1 +","+ x.T2 +","+ x.T3  +","+  x.T4 +","+ x.T5).OrderByDescending(x=>x.Count());
            var q2 = Team2.ToList().GroupBy(x => x.T1 + x.T2 + x.T3 + x.T4 + x.T5, x => x.T1 +","+ x.T2 +","+ x.T3  +","+  x.T4 +","+ x.T5).OrderByDescending(x => x.Count());
            var q3 = Team3.ToList().GroupBy(x => x.T1 + x.T2 + x.T3 + x.T4 + x.T5, x => x.T1 +","+ x.T2 +","+ x.T3  +","+  x.T4 +","+ x.T5).OrderByDescending(x => x.Count());
            //第一个就是重复次数最多的
            var maxTeam1 = q1.FirstOrDefault();
            var maxTeam2 = q2.FirstOrDefault();
            var maxTeam3 = q3.FirstOrDefault();
            string[] teamPath1=null;
            string[] teamPath2=null;
            string[] teamPath3=null;
            foreach (var name in maxTeam1)
            {
                teamPath1 = name.Split(',');
            }
            foreach (var name in maxTeam2)
            {
                teamPath2 = name.Split(',');
            }
            foreach (var name in maxTeam3)
            {
                teamPath3 = name.Split(',');
            }
            //teamPath1
            pictureBox1.ImageLocation = teamPath1[0];
            pictureBox2.ImageLocation = teamPath1[1];
            pictureBox3.ImageLocation = teamPath1[2];
            pictureBox4.ImageLocation = teamPath1[3];
            pictureBox5.ImageLocation = teamPath1[4];
            //teamPath2
            pictureBox6.ImageLocation = teamPath2[0];
            pictureBox7.ImageLocation = teamPath2[1];
            pictureBox8.ImageLocation = teamPath2[2];
            pictureBox9.ImageLocation = teamPath2[3];
            pictureBox10.ImageLocation = teamPath2[4];
            //teamPath3
            pictureBox11.ImageLocation = teamPath3[0];
            pictureBox12.ImageLocation = teamPath3[1];
            pictureBox13.ImageLocation = teamPath3[2];
            pictureBox14.ImageLocation = teamPath3[3];
            pictureBox15.ImageLocation = teamPath3[4];
            //再算一下概率
            //q本身只是以编队类型进行了分组,q的数量不能代表max的数量,q的数量只能代表有几种类型
            //当你确定了最大类型时,以最大类型为标准,在特定位置的Team里面进行筛选
            int first=0;
            foreach(var item in Team1)
            {
                if(item.T1+item.T2+item.T3+item.T4+item.T5== maxTeam1.Key)
                {
                    first++;
                }
            }
            int second = 0;
            foreach(var item in Team2)
            {
                if(item.T1 + item.T2 + item.T3 + item.T4 + item.T5 == maxTeam2.Key)
                {
                    second++;
                }
            }
            int third = 0;
            foreach(var item in Team3)
            {
                if (item.T1 + item.T2 + item.T3 + item.T4 + item.T5 == maxTeam3.Key)
                {
                    third++;
                }
            }
            double per1 = Convert.ToDouble(first) /Team1.Count();
            lblFirstPer.Text = per1.ToString("P");
            double per2 = Convert.ToDouble(second) / Team2.Count();
            lblSecondPer.Text = per2.ToString("P");
            double per3 = Convert.ToDouble(third) / Team3.Count();
            lblThirdPer.Text = per3.ToString("P");
        }
        else
        {
            MessageBox.Show("该玩家没有" + GenreN + "记录!");
        }
    }
}


讲真,当出现

System.InvalidOperationException:“Client side GroupBy is not supported.” 

的那一刻,我都打算阉割了这个Analyzer功能,干脆直接叫Recorder算了。

但是后来解决了问题之后,发现之前的概率分析是有问题的。

可能是当时写代码的时候,脑子不太清醒吧。代码一复杂,再加上人不在状态,越来越容易犯错。

现在回过味儿来了。

改,都可以改!总算是改完了。

今天就先记一下这个代码。

This article was last edited at 2020-09-11 15:31:05

Today's comments have reached the limit. If you want to comment, please wait until tomorrow (UTC-Time).

There is 18h54m58s left until you can comment.